31 research outputs found

    Modelling the Northeast Atlantic circulation : implications for the spring invasion of shelf regions by Calanus finmarchicus

    Get PDF
    The appearance in spring of the copepod Calanus finmarchicus in continental shelf waters of the northeastern Atlantic has been hypothesized to be mainly attributable to invasion from across the continental slope rather than in situ overwintering. This paper describes the application of a hydrodynamic circulation model and a particle-tracking model to Northeast Atlantic waters in order to assess the influence of the flow field and ascent migration parameters on the spring invasion of C. finmarchicus. For hydrodynamic modelling, the Hamburg Shelf-Ocean Model (HAMSOM) was applied to the North Atlantic and Nordic Seas and forced with daily mean atmospheric data. Simulated flow fields from HAMSOM serve as forcing functions for a particle-tracking model of the same region. The robustness of the simulated shelf invasion in three target boxes of the Northeast Atlantic Shelf was assessed by means of a sensitivity analysis with respect to variations in four key migration parameters: overwintering depth, ascent rate, ascent timing, and depth during residence in upper layers. The invasion of the northern North Sea and Norwegian Shelf waters is more sensitive to ascent migration parameters than invasion of the Faroese Shelf. The main reason for enhanced sensitivity of the North Sea invasion is the time and space-dependent flow structure in the Faroe-Shetland Channel. Dense aggregations of overwintering C. finmarchicus are found in the Channel, but because of the complex flow field only a proportion of the overwintering stock has the capacity to reach the North Sea

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    Biogeochemical, isotopic and bacterial distributions trace oceanic abyssal circulation

    Get PDF
    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements.We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. © 2016 Rubino et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss

    Get PDF
    The heat contained in the ocean (OHC) dominates the Earth’s energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2– twice that assessed globally in the same period – exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column

    Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research

    Get PDF
    This paper is the outcome of a workshop held in Rome in November 2011 on the occasion of the 25th anniversary of the POEM (Physical Oceanography of the Eastern Mediterranean) program. In the workshop discussions, a number of unresolved issues were identified for the physical and biogeochemical properties of the Mediterranean Sea as a whole, i.e., comprising the Western and Eastern sub-basins. Over the successive two years, the related ideas were discussed among the group of scientists who participated in the workshop and who have contributed to the writing of this paper. Three major topics were identified, each of them being the object of a section divided into a number of different sub-sections, each addressing a specific physical, chemical or biological issue: 1. Assessment of basin-wide physical/biochemical properties, of their variability and interactions. 2. Relative importance of external forcing functions (wind stress, heat/moisture fluxes, forcing through straits) vs. internal variability. 3. Shelf/deep sea interactions and exchanges of physical/biogeochemical properties and how they affect the sub-basin circulation and property distribution. Furthermore, a number of unresolved scientific/methodological issues were also identified and are reported in each sub-section after a short discussion of the present knowledge. They represent the collegial consensus of the scientists contributing to the paper. Naturally, the unresolved issues presented here constitute the choice of the authors and therefore they may not be exhaustive and/or complete. The overall goal is to stimulate a broader interdisciplinary discussion among the scientists of the Mediterranean oceanographic community, leading to enhanced collaborative efforts and exciting future discoveries

    Variability and Trends in Physical and Biogeochemical Parameters of the Mediterranean Sea during a Cruise with RV MARIA S. MERIAN in March 2018

    Get PDF
    The last few decades have seen dramatic changes in the hydrography and biogeochemistry of the Mediterranean Sea. The complex bathymetry and highly variable spatial and temporal scales of atmospheric forcing, convective and ventilation processes contribute to generate complex and unsteady circulation patterns and significant variability in biogeochemical systems. Part of the variability of this system can be influenced by anthropogenic contributions. Consequently, it is necessary to document details and to understand trends in place to better relate the observed processes and to possibly predict the consequences of these changes. In this context we report data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Maria S. Merian (MSM72) in March 2018. The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake and to further assess the hydrographical situation after the major climatological shifts in the eastern and western part of the basin, known as the Eastern and Western Mediterranean Transients. During the cruise, multidisciplinary measurements were conducted on a predominantly zonal section throughout the Mediterranean Sea, contributing to the Med-SHIP and GO-SHIP long-term repeat cruise section that is conducted at regular intervals in the Mediterranean Sea to observe changes and impacts on physical and biogeochemical variables. The data can be accessed at https://doi.org/10.1594/PANGAEA.905902 (Hainbucher et al., 2019), https://doi.org/10.1594/PANGAEA.913512 (Hainbucher, 2020a) https://doi.org/10.1594/PANGAEA.913608, (Hainbucher, 2020b) https://doi.org/10.1594/PANGAEA.913505, (Hainbucher, 2020c) https://doi.org/10.1594/PANGAEA.905887 (Tanhua et al., 2019) and https://doi.org/10.25921/z7en-hn85 (Tanhua et al, 2020)

    Thermohaline properties in the Eastern Mediterranean in the last three decades: is the basin returning to the pre-EMT situation?

    Get PDF
    Temperature, salinity and oxygen data collected during April and June 2011 (M84/3 and P414 cruises respectively) are analysed to derive the oceanographic characteristics of the Eastern Mediterranean (EM) basin. These observed characteristics are compared with those from previous cruises over the period 1987–2011. As a result, the interannual and decadal variability of the EM thermohaline properties are discussed in the context of the evolution of the Eastern Mediterranean Transient (EMT) and of the general circulation of the basin. We found that the state of the EM is still far from the pre-EMT conditions, though the 2011 results possibly indicate a slow return to this status. In particular, a comparison between thermohaline property evolution deriving from interannual variability of the preconditioning and air–sea interaction (heat fluxes) in the South Adriatic and the Cretan Seas reveals aspects of the alternation of the two dense water sources (Adriatic and Aegean) during the last three decades, which have strong implications for the hydrographic characteristics of the intermediate and deep layers of the Ionian and Levantine basins

    Water mass characteristics in the deep layers of the western Ionian Basin observed during May 2003

    No full text
    CTD measurements carried out in the southern Adriatic Sea and in the western Ionian basin (Eurafrican Mediterranean Sea) during May 2003 by the German research vessel Poseidon (Poseidon cruise 298) and numerical simulations are used to elucidate aspects of the abyssal circulation of this oceanic region. The observations reveal that dense waters of Adriatic origin were strongly diluted along their way on the Italian continental slope, whilst their characteristics remained better preserved in a region located further east. Numerical simulations carried out by means of a nonlinear, reduced-gravity plume model confirm the observations and contribute to explain their cause: The very steep topographic slope along the Italian shelf in the region of the Gulf of Taranto induces strong entrainment of intermediate waters in the bottom layers. Instead, the bottom waters of Adriatic origin which, along their path further east, encounter gentler topographic variations, are weakly diluted by turbulent mixing and, therefore, better preserve their original characteristics. The remarkable differences in the simulated turbulent mixing along these two different paths are accentuated by the presence of a noticeable zonal gradient of potential density existing in the near-bottom layers of the northern Ionian basin
    corecore